
The ToxCast Analysis Pipeline:

An R Package for Processing and Modeling

Chemical Screening Data

Dayne Lewis Filer

December 1, 2014

Contents

Introduction 2
Overview . 2
Package Settings . 2
Assay Structure . 4

Multiple Concentration Screening 5
First Steps . 5
Level 1 . 7
Level 2 . 10
Level 3 . 13
Level 4 . 15
Level 5 . 19
Level 6 . 23

Single Concentration Screening 27

A Field Explaination/Database Stucture 28

B Level 0 Pre-Processing 39

C Burst Z-Score Calculation 41

D Plans for V1.0 Release 43

1

DRAFT VERSION

Introduction

Overview

This package was developed to process the high-throughput and high-content
screening data generated by the US EPA ToxCastTM program.1 The ToxCast
program is screening thousands of chemicals with hundreds of assays coming
from numerous and diverse biochemical and cell-based technology platforms.
The diverse data received from in heterogeneous formats from numerous ven-
dors is transformed to a standard computible format and loaded into the tcpl
databases by vendor-specific R scripts. Once data is loaded into the databases,
the ToxCast program utilizes the generalized processing functions provided in
this package to process, normalize, model, qualify, flag, inspect, and visualize
the data.

The ToxCast program includes two screening paradigms: single concen-
tration screening and multiple concentration screening. Single concentration
screening consists of testing chemicals at one concentration – often for the pur-
pose of identifying potential actives to test at multiple concentrations. Multi-
ple concentration screening consists of testing chemicals across a concentration
range, such that the modeled activity can give an estimate of potency, e�cacy,
etc.

Prior to the pipeline processing provided in this package, all the data must
go through pre-processing (level 0). Level 0 pre-processing utilizes dataset-
specific R scripts to process heterogeneous data into a uniform format and load
the uniform data into the tcpl databases. Level 0 pre-processing is outside
the scope of this package, but can be done on virtually any high-throughput or
high-content screening e↵orts, provided the resulting data includes the minimum
required information.

In addition to storing the data, the tcpl databases store every process-
ing/analysis decision at the assay component or assay endpoint level to facilitate
transparency and reproducibility. For the illustrative purposes in this vignette
we have included SQLite versions of the tcpl databases containing dummy data.
Due to di↵erences in database capabilities, not all functionality of the package
will work with the SQLite version. To best utilize the package the user should
work with MySQL databases and the RMySQL package. The MySQL versions
of the tcpl databases containing all the publicly available ToxCast data are
available for download at: <http://epa.gov/ncct/toxcast/data.html>.

Package Settings

First we will load the package (you will also want to load the data.table pack-
age), and look at the default settings for the example databases.

1<http://www.epa.gov/ncct/toxcast/>

DRAFT VERSION

R Input

> library(data.table)
> library(tcpl)

When you load the package in the R console, you will see a message like the
following:

R Output

tcpl loaded with the following settings:
TCPL_DATA: /usr/local/lib64/R/library/tcpl/sql/xmpl.sqlite
TCPL_CHEM: /usr/local/lib64/R/library/tcpl/sql/xmpl.sqlite
TCPL_USER:
TCPL_HOST:
TCPL_DRVR: SQLite
TCPL_LOG: /usr/local/lib64/R/library/tcpl

Default settings stored in TCPL.conf. See ?tcplListOpts or
?tcplSetOpts for more information.

Here we see $TCPL_DATA and $TCPL_CHEM point to the the example database
in the package directory, and the database driver ($TCPL_DRVR) is set to“SQLite”.
If you choose to download and use the ToxCast database, you will have to con-
figure the settings to reflect your MySQL environment. While the DATA and
CHEM databases can be separate, in the ToxCast database currently released
the chemical and data tables have been merged into a single database for sim-
plicity. Look at ?tcplSetOpts for more information. At any time you can check
the settings using tcplListOpts(). An example of database settings would be:

R Input

> tcplSetOpts(drvr = "MySQL",
user = "root",
pass = "",
host = "localhost",
data = "invitrodb_v1",
chem = "invitrodb_v1",
log = system.file(package = "tcpl"))

When the package is loaded, the settings are configured by the TCPL.config
file located in the package directory. The user can edit the file, such that the
package loads with the desired settings every time. The configuration script has
to be edited whenever the package is updated or re-installed.

DRAFT VERSION

Assay Structure

The definition of an“assay”gets complicated when dealing with high-throughput/high-
content data. For the purposes of this package, “assay” is broken into:

assay source – the vendor/origination of the data

assay – the procedure to generate the component data

assay component – the raw data readout(s)

assay component endpoint – the normalized component data

Each element has a separate table in the tcpl databases. In general we refer
to an “assay component endpoint” as an “assay endpoint”. As we move down
the hierarchy, each additional layer has a one-to-many relationship with the
previous layer. For example, an assay component can have multiple endpoints,
but an assay endpoint can only have one assay component.

Assay and assay source do not contain any chemical data, but store annota-
tions to help in the processing and down-stream understanding/analysis of the
data. All processing occurs by assay component or assay endpoint, depending
on the processing level. For more information about the assay annotation please
refer to <http://www.epa.gov/ncct/toxcast/>.

DRAFT VERSION

Multiple Concentration Screening

This section will cover the tcpl process for handling multiple concentration
data. The goal of multiple concentration processing is to estimate the activity,
potency, e�cacy, and other parameters for sample-assay pairs. After the data is
loaded into the tcpl databases, the multiple concentration processing consists
of six levels (Table 1).

Table 1: Summary of the tcpl multiple-concentration pipeline.

Description Function

Lvl 0 Vendor/dataset-specific pre-processing to transform heteroge-
neous data to the uniform tcpl format for processing by the tcpl
package

N/A†

Lvl 1 Define the replicate and concentration indices to facilitate all sub-
sequent processing

tcpl1

Lvl 2 Apply assay component-specific corrections listed in the tcpl
databases to the raw data to define the corrected data

tcpl2

Lvl 3 Apply assay endpoint-specific normalization listed in the tcpl
databases to the corrected data to define response

tcpl3

Lvl 4 Model the concentration-response data utilizing three objective
functions: constant, hill, and gain-loss

tcpl4

Lvl 5 Select the winning model, define the response cuto↵ based on
methods in the tcpl databases, and determine activity

tcpl5

Lvl 6 Flag potential false positive and false negative findings based on
methods in the tcpl databases

tcpl6

†
Level 0 processing outside the scope of this package

First Steps

To start exploring the data we will look first in the assay source table to find
out what data is available in the tcpl databases.

R Input

> AS <- tcplLoadAsid()
> AS

R Output

asid asnm
1: 1 DEC

DRAFT VERSION

We can see the example database contains only one assay source, “DEC”.
What if we want to know more about the assay source? We know from the
previous section on assay structure that the assay source information is stored
in the assay source table. The user can use the tcplListFlds function to find
out what other information is available.

R Input

> tcplListFlds(tbl = "assay_source")

R Output

[1] "asid" "assay_source_name"
[3] "assay_source_long_name" "assay_source_desc"

R Input

> ## We can add the long name and description to the add.fld
> ## variable in the tcplLoadAsid call
> AS <- tcplLoadAsid(add.fld = c("assay_source_long_name",

"assay_source_desc"))
> AS

R Output

asid asnm assay_source_long_name
1: 1 DEC Dayne's Example Biotech Company

assay_source_desc
1: Completely fake data for illustration.

The convention used in the ToxCast program is to prepend all of the assay
component and assay endpoint names with the assay source name (an abbrevi-
ation of the assay source long name). We can use the assay source information
to see what assay components exist, then look at the level 0 data.

R Input

> tcplLoadAcid(fld = "asid", val = 1L)

R Output

asid acid acnm
1: 1 1 DEC_Fake_Assay

R Input

> l0data <- tcplLoadData(lvl = 0L, fld = "acid", val = 1L)
> dim(l0data)

DRAFT VERSION

R Output

[1] 864 12

R Input

> head(l0data)

R Output

l0id spid cpid acid apid rowi coli wllt wllq conc
1: 1 DMSO NA 1 AP0001 2 21 n 1 0.5
2: 2 DMSO NA 1 AP0001 2 22 n 1 0.5
3: 3 DMSO NA 1 AP0001 3 2 n 1 0.5
4: 4 DMSO NA 1 AP0001 4 2 n 1 0.5
5: 5 DMSO NA 1 AP0001 5 2 n 1 0.5
6: 6 DMSO NA 1 AP0001 6 2 n 1 0.5

rval srcf
1: 1.001 Some_source_file_1.txt
2: 0.891 Some_source_file_1.txt
3: 0.734 Some_source_file_1.txt
4: 0.760 Some_source_file_1.txt
5: 0.813 Some_source_file_1.txt
6: 0.982 Some_source_file_1.txt

In the example dataset we have one assay component (“DEC Fake Assay”,
acid 1) with 864 entries. Appendix A contains a complete description of the
field names. The following sections will explain the processing at each level in
detail.

Level 1

Level 1 processing defines the replicate and concentration index fields to facil-
itate downstream processing. Due to cost, availability, physicochemical, and
technical constraints screening level e↵orts utilize numerous experimental de-
signs and test compound (sample) stock concentrations. The resulting data con-
tains inconsistent numbers of concentrations, concentration values, and technical
replicates. To enable quick and uniform processing, level 1 processing explic-
itly defines concentration and replicate indices, giving integer values 1 . . . N to
increasing concentrations and technical replicates where 1 represents the lowest
concentration or first technical replicate.

To assign the replicate and concentration index we assume one of two ex-
perimental designs. The first design assumes samples are plated in multiple
concentrations on each assay plate, such that the concentration series all falls
on a single assay plate. The second design assumes samples are plated in a
single concentration on each assay plate, such that the concentration series falls
across many assay plates.

DRAFT VERSION

For both experimental designs the data is ordered by source file (srcf), assay
plate ID (apid), column index (coli), row index (rowi), sample ID (spid), and
concentration (conc). Concentration is rounded to three significant figures to
correct for potential rounding errors. After ordering the data we create a tempo-
rary replicate id, identifying individual concentration series. For test compounds
in experimental designs with the concentration series on a single plate and all
control compounds, the replicate ID consists of the sample id, well type (wllt),
source file, assay plate id, chemical plate ID (cpid), and concentration. The
replicate ID for test compounds in experimental designs with concentration se-
ries that span multiple assay plates is defined similarly, but does not include
apid.

Once the data is ordered and the temporary replicate ID is defined, we scan
the data from top to bottom and increment the replicate index (repi) every
time a replicate ID is duplicated. Then for each replicate we define the con-
centration index (cndx) by ranking the unique concentrations, with the lowest
concentration starting at 1.

We will start by doing the level 1 processing. The multiple concentration
data processing is done with the “tcpl#” functions, where the number indicates
the level for processing. For level 1 processing we will use tcpl1, which takes a
single acid. For running multiple ids look at ?tcplRunPipe. Do the processing
and inspect the results:

R Input

> ## Do level 1 processing for acid 1
> tcpl1(ac = 1L)

R Output

Loaded L0 ACID1 (864 rows; 0.01 secs)
Processed L1 ACID1 (864 rows; 0.04 secs)
Completed delete cascade for 1 ids (0.07 secs)
Wrote L1 ACID1 (864 rows; 0.09 secs)
[1] TRUE

The processing functions print messages to the console indicating the four
steps of the processing. First, the data is loaded, the data is processed, subse-
quent level is deleted, then the processed data is written to the databse. The
function returns a boolean indicating the success of the processing. The “delete
cascade” here means all data after level 1 got deleted from the database for the
processed acid. The delete cascade ensures data fidelty across the database.
Suppose a user decides to rerun level 3 after finishing processing to level 6, but
forgets to rerun the subsequent levels. Without the delete cascade, the old data
in level 4 through level 6 would not correspond to the new level 3 data in the
database. With the delete cascade, the user can look at the database at any
time and get a complete picture of the data processing. With the processing

DRAFT VERSION

complete we can load the level 1 data and check the processing:

R Input

> ## Load the level 1 data and look at the assay plate ids
> l1data <- tcplLoadData(lvl = 1L, fld = "acid", val = 1L)
> l1data <- tcplPrepOtpt(l1data)
> setkeyv(l1data, c("repi", "cndx"))
> l1data[chnm == "ChemName3",

list(chnm, acid, conc, cndx, repi)]

R Output

chnm acid conc cndx repi
1: ChemName3 1 0.3 1 1
2: ChemName3 1 1.0 2 1
3: ChemName3 1 3.0 3 1
4: ChemName3 1 10.0 4 1
5: ChemName3 1 30.0 5 1
6: ChemName3 1 100.0 6 1
7: ChemName3 1 0.3 1 2
8: ChemName3 1 1.0 2 2
9: ChemName3 1 3.0 3 2
10: ChemName3 1 10.0 4 2
11: ChemName3 1 30.0 5 2
12: ChemName3 1 100.0 6 2
13: ChemName3 1 0.3 1 3
14: ChemName3 1 1.0 2 3
15: ChemName3 1 3.0 3 3
16: ChemName3 1 10.0 4 3
17: ChemName3 1 30.0 5 3
18: ChemName3 1 100.0 6 3

ChemName3 contains 3 replicates, each with 6 distinct concentrations. The
package also contains a tool for visualizing the level 1 - level 3 data at the
assay plate level. In Figure 1 we see the results of tcplPlotPlate. The row
and column indices are printed along the edge of the plate, with the values
in each well represented by color. While the plate does not give sample ID
information, the letter number codes in the wells indicate the well type and
concentration index, respectively. The plate display also shows the wells that
did not pass quality with an “X”. Plotting plates in subsequent levels will show
empty wells where the well did not meet the quality metrics, denoted by the
well quality (wllq) field in the level 0 table. The title of the display shows the
assay component/assay endpoint and the assay plate ID (apid).

DRAFT VERSION

R Input

> ## List the plates and plot one
> l1data[, head(unique(apid))]

R Output

[1] "AP0001" "AP0003" "AP0002"

R Input

> tcplPlotPlate(dat = l1data, apid = "AP0002")

ACID1 (DEC_Fake_Assay): AP0002

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

16

15

14

13

12

11

10

09

08

07

06

05

04

03

02

01

n1

n1

n1

n1

n1

n1 n1

n1

n1

n1

p1

p1

p1

p1

p1

p1

p1

p1

t1

t1

t1

t1

t1

t1

t1

t1

t1

t1

t1

t1

t1

t2

t2

t2

t2

t2

t2

t2

t2

t2

t2

t2

t2

t2

t3

t3

t3

t3

t3

t3

t3

t3

t3

t3

t3

t3

t3

t4

t4

t4

t4

t4

t4

t4

t4

t4

t4

t4

t4

t4

t5

t5

t5

t5

t5

t5

t5

t5

t5

t5

t5

t5

t5

t6

t6

t6

t6

t6

t6

t6

t6

t6

t6

t6

t6

t6

t1

t1

t1

t1

t1

t1

t1

t1

t1

t1

t1

t1

t1

t2

t2

t2

t2

t2

t2

t2

t2

t2

t2

t2

t2

t2

t3

t3

t3

t3

t3

t3

t3

t3

t3

t3

t3

t3

t3

t4

t4

t4

t4

t4

t4

t4

t4

t4

t4

t4

t4

t4

t5

t5

t5

t5

t5

t5

t5

t5

t5

t5

t5

t5

t5

t6

t6

t6

t6

t6

t6

t6

t6

t6

t6

t6

t6

t6

t1

t1

t1

t1

t1

t1

t1

t1

t1

t1

t1

t1

t1

t2

t2

t2

t2

t2

t2

t2

t2

t2

t2

t2

t2

t2

t3

t3

t3

t3

t3

t3

t3

t3

t3

t3

t3

t3

t3

t4

t4

t4

t4

t4

t4

t4

t4

t4

t4

t4

t4

t4

t5

t5

t5

t5

t5

t5

t5

t5

t5

t5

t5

t5

t5

t6

t6

t6

t6

t6

t6

t6

t6

t6

t6

t6

t6

t6

t1t2t3t4t5t6 t1t2t3t4t5t6 t1t2t3t4t5t6

c1

c2

c3

c4

c5

c6

c1

c2

c3

c4

c5

c6

c1

c2

c3

c4

c5

c6

 0.0

 1.2

 2.3

 3.5

 4.6

 5.8

 6.9

 8.1

 9.3

 10.4

Figure 1: An assay plate diagram. The color indicates the raw values according
to the key on the left. The bold lines on the key show the distribution of values
for the plate on the scale of values across the entire assay. The text inside each
well shows the well type and concentration index. For example, “t4” indicates a
test compound at the fourth concentration. The wells with an “X” have a well
quality of 0.

Level 2

Level 2 processing removes data where the well quality equals 0, and defines the
corrected value (cval) field. The purpose of this step is to allow for any manip-
ulation or correction of the raw values at the assay component level. Examples
of correction methods could range from basic transformations like a logarithm,
to complex transformations like a spacial noise reduction algorithm. Currently

DRAFT VERSION

the tcpl package only consists of basic transformations, but could be expanded
in future releases. Level 2 correction does not include normalization methods –
normalization should occur at level 3.

To promote reproducibility, all method assignments must occur through the
database. In other words, the user cannot simply pass an argument to the
processing function and apply a method to the data. In general, the available
methods are stored in the “l# methods” tables, where “#” corresponds to the
level. The corresponding “l# id” tables store the method assignments, along
with the method execution order. The processing functions load the methods
for the given assay component (or assay endpoint in subsequent levels) using
the tcplLoadMthd() function:

R Input

> tcplLoadMthd(lvl = 2L, id = 1L)

R Output

acid mthd mthd_id ordr
1: 1 none 1 1

In the example data the only method assigned to acid 1 is “none”. Every as-
say component needs at least one correction method assigned to complete level
2 processing. The method can be “none”, as in the example dataset. Suppose
the user wants to add a correction method. First list out the methods with
tcplListMthd, then use tcplAssignMthd to assign the method(s) to the assay
component after the old methods are cleared using tcplClearMthd.

R Input

> head(tcplListMthd(lvl = 2L))

R Output

l2_mthd_id l2_mthd
1: 1 none
2: 2 log2
3: 3 rmneg
4: 4 rmzero
5: 5 mult25
6: 7 mult100

desc
1: apply no level 2 method
2: log2 all raw data
3: remove negative values prior to logging values
4: remove 0 values prior to logging values
5: multiply values by 25
6: multiply values by 100

DRAFT VERSION

R Input

> tcplClearMthd(lvl = 2L, id = 1L)

R Output

Completed delete cascade for 1 ids (0.06 secs)
[1] TRUE

R Input

> tcplAssignMthd(lvl = 2L, id = 1L, mthd_id = c(4L, 3L),
ordr = 1:2)

R Output

Completed delete cascade for 1 ids (0.06 secs)

R Input

> tcplLoadMthd(lvl = 2L, id = 1L)

R Output

acid mthd mthd_id ordr
1: 1 rmzero 4 1
2: 1 rmneg 3 2

In the example above, the old methods were cleared, then reassigned. The
final result shows the new set of correction methods assigned to the data: in
order, remove zero values then remove negative values. Also notice changing the
methods (clearing or assigning), triggers a delete cascade similar to the process-
ing. Every time methods are changed all data and subsequent data for the level
a↵ected gets deleted. The delete cascade ensures the methods always correctly
correspond to the data in the database. With the methods assigned and checked
we can carryon with level 2 processing:

R Input

> ## Do level 2 processing for acid 1
> tcpl2(ac = 1L)

R Output

Loaded L1 ACID1 (864 rows; 0.02 secs)
Processed L2 ACID1 (847 rows; 0.02 secs)
Completed delete cascade for 1 ids (0.06 secs)
Wrote L2 ACID1 (847 rows; 0.08 secs)
[1] TRUE

DRAFT VERSION

For the complete list of level 2 correction methods currently available, see tc-
plListMthd(lvl = 2L), or ?L2_Methods for more detail. The coding methodly
used to impliment the methods is beyond the scope of this vignette, but in brief,
the method names in the databases correspond to a function name in the list
of functions returned by tcplCorrFuncs() (the tcplCorrFuncs() function is
not exported, and not intended for use by the user). Each of the functions in
the list given by tcplCorrFuncs() only return expression objects that tcpl2
executes in the local function environment to avoid making additional copies of
the data in memory.

Level 3

Level 3 processing converts the assay component to assay endpoint(s) and de-
fines the normalized response value field (resp), logarithm concentration field
(logc), and optionally, the baseline value (bval) and positive control value (pval)
fields. The purpose of level 3 is to normalize the corrected values to either the
percentage of a control, or to fold-change from baseline. The processing aspect
of level 3 is almost completely analagous to level 2, except the user has to be
careful about using assay component versus assay endpoint.

As discussed in the Assay Structure section (page 4), an assay component
can have more than one assay endpoint allowing for multiple normalization ap-
proaches. Mulitple normalization approaches become necessary when the assay
component detects both gain and loss signals. As discussed in the following
section, the curvefitting algorithm only fits in the positive direction, so negative
direction curves must be transformed to the positive direction during normal-
ization.

The user first needs to check which assay endpoints stem from the the assay
component queued for processing. It is also important to check the normaliza-
tion methods assigned to the assay endpoints.

R Input

> ## Look at the assay endpoints for acid 1
> tcplLoadAeid(fld = "acid", val = 1L)

R Output

acid aeid aenm
1: 1 1 DEC_Fake_Assay_up

R Input

> ## Look at the normalization methods assigned to aeid 1
> tcplLoadMthd(lvl = 3L, id = 1L)

R Output

aeid mthd mthd_id ordr
1: 1 bval.apid.1owconc.med 2 1

DRAFT VERSION

2: 1 pval.apid.medpcbyconc.max 3 2
3: 1 resp.pc 5 3

The example dataset only includes one assay endpoint,“DEC Fake Assay up”.
The assay endpoint has three methods assigned, ending with “resp.pc”. When
assay endpoints require normalization it is important to consider the necessary
elements. The pipeline only accepts zero-centered data, so all response values
must eventually be in percent of control or logarithm fold-change units. When
normalizing to a control, an assay endpoint needs at least three normalization
methods: one to define the baseline value, one to define the control value, and
the method to calculate percent of control (“resp.pc”). Normalizing to fold-
change also requires at least three methods: one to define the baseline value,
one to calculate the fold change, and one take a logarithm. The methods for
defining a baseline value have the “bval” prefix, and the methods for defining
the control value have the “pval” prefix. The formluae for calculating the the
percent of control and fold-change response values are listed in equations 1 and
2, respectively.

The percent of control and fold-change values, respectively, as:

resp =
cval � bval

pval � bval

100 (1)

resp = cval/bval (2)

For a complete list of normalization methods see ?L3_Methods. With the
assay endpoints and normalization methods defined, the user can proceed with
level 3 processing fo the assay component.

R Input

> ## Do level 3 processing for acid 1
> tcpl3(ac = 1)

R Output

Loaded L2 ACID1 (847 rows; 0.02 secs)
Processed L3 ACID1 (AEIDS: 1; 847 rows; 0.11 secs)
Completed delete cascade for 1 ids (0.01 secs)
Wrote L3 ACID1 (AEIDS: 1; 847 rows; 0.04 secs)
[1] TRUE

Notice the tcpl3 function takes an assay component id, NOT an
assay endpoint id. The user must assign normalization methods to assay
endpoint, then do the processing by assay component. The tcpl3 function will
process all endpoints in the database for a given component. If one endpoint
does not have appropriate methods assigned, and fails, the processing for the
entire component fails.

DRAFT VERSION

Level 4

Level 4 processing splits the data into concentration series by sample and assay
endpoint, then models the activity of each concentration series. Activity is only
modeled in the positive direction. More information on readouts with both
directions is available in the previous section.

Only concentration series with evidence of activity go through the fitting
algorithm. The first step in level 4 processing is to remove the well types with
only one concentration. To establish the noiseband for the assay endpoint, the
baseline median absolute deviation (bmad) is calculated as the median absolute
deviation of the response values for test compounds where the concentration
index equals 1 or 2. The calculation to define bmad is done once across the
entire assay endpoint. If additional data is added to the database for an assay
component, the bmad values for all associated assay endpoints will change.

Before the model parameters are estimated, the tcpl4 function calculates a
set of summary values for each concentration series: the minimum and maxi-
mum response, minimum and maximum log concentration, the number of con-
centrations, points, and replicates, the maximum mean and median with the
concentration at which they occur, and the number of medians greater than
3bmad . When referring to the concentration series the “mean” and “median”
values are defined as the mean or median of the response values at every con-
centration. In other words, the maximum median is the maximum of all median
values across the concentration series.

Concentration series have to have at least four concentrations and at least
one median value to enter the fitting algorithm. All models draw from the
Student’s t-distribution with 4 degrees of freedom. The wider tails in the t-
distribution diminish the influence of outlier values, and produce more robust
estimates than the more commonly used normal distribution. The robust fitting
removes the need for any outlier elimination before fitting. The fitting algorithm
utilizes maxmimum likelihood estimates parameters for three models as defined
below in equations 3 to 16.

Let t(z, ⌫) be the Student’s t-ditribution with ⌫ degrees of freedom, y
i

be
the observed response at the i

th observation, and µ

i

be the estimated response
at the i

th observation. We calculate z

i

as:

z

i

=
y

i

� µ

i

exp(�)
(3)

where � is the scale term. Then the log-likelyhood is:
nX

i=1

[ln (t(z
i

, 4))� �] (4)

where n is the number of observations.
The first model fit in the fitting algorithm is a constant model at 0, abbre-

viated “cnst”. The constant model only has one paramter, the scale term. For
the constant model µ

i

is given by:

µ

i

= 0. (5)

DRAFT VERSION

The second model in the fitting algorithm is a constrained Hill model (hill)
where the bottom asymptote is forced to 0. Including the scale parameter the
Hill model has four parameters. Let tp be the top asymptote, ga be the AC502

in the gain direction, gw be the Hill coe�cient in the gain direction, and x

i

be
the log concentration at the ith observation. Then µ

i

for the Hill model is given
by:

µ

i

=
tp

1 + 10(ga�xi)gw
(6)

with the constraints
0  tp  1.2max resp, (7)

min logc� 2  ga  max logc + 0.5, (8)

and
0.3  gw  8. (9)

The third model in the fitting alrogirthm is a constrained gain-loss model
(gnls), defined as a product of two Hill models with a shared top asymptote
and both bottom asymptotes equal to 0. Including the scale term, the gain-loss
model has six parameters. Let tp be the shared top asymptote, ga be the AC50
in the gain direction, gw be the Hill coe�cient in the gain direction, la be the
AC50 in the loss direction, lw be the Hill coe�cient in the loss direction, and x

i

be the log concentration at the ith observation. Then µ

i

for the gain-loss model
is given by:

µ

i

= tp

✓
1

1 + 10(ga�xi)gw

◆✓
1

1 + 10(xi�la)lw

◆
(10)

with the constraints
0  tp  1.2max resp, (11)

min logc� 2  ga  max logc, (12)

0.3  gw  8, (13)

min logc� 2  la  max logc + 2, (14)

0.3  lw  18, (15)

and
ga � la > 0.25. (16)

Level 4 does not utilize any assay endpoint-specific methods; the user only
needs to run the tcpl4 function. Level 4 processing and all subsequent
processing is done by assay endpoint, NOT assay component. The
previous section showed how to find the assay endpoints for an assay compo-
nent using the tcplLoadAeid function. The example dataset includes one assay
endpoint with the name “DEC Fake Assay up” and ID 1.

2
The AC50 is the activity concentration at 50%, or the concentration where the modeled

activity equals 50% of the top asymptote.

DRAFT VERSION

R Input

> ## Do level 4 processing for aeid 1 and load the data
> tcpl4(ae = 1)

R Output

Loaded L3 AEID1 (795 rows; 0.02 secs)
Processed L4 AEID1 (795 rows; 1.03 secs)
Completed delete cascade for 1 ids (0.01 secs)
Wrote L4 AEID1 (795 rows; 0.11 secs)
[1] TRUE

R Input

> l4data <- tcplLoadData(lvl = 4L, fld = "aeid", val = 1L)
> dim(l4data)

R Output

[1] 42 51

The level 4 data includes 52 variables, including the ID fields. A complete
list of level 4 fields is avialable in Appendix A. The example dataset contains
42 concentration series. The level 4 data includes the fields cnst , hill , and gnls

indicating the convergance of the model where a value of 1 means the model
converged and a value of 0 means the model did not converge. N/A values
indiciate the fitting algorithm did not attempt to fit the model. cnst will be
N/A when the concentration series had less than 4 concentrations; hill and gnls

will be N/A when none of the medians were greater than or equal to 3bmad .
Similarly, the hcov and gcov fields indicate the success in inverting the Hessian
matrix. Any NaN values in the parameter standard deviation fields indicate the
Hessian matrix was not positive definite, and the standard deviation values lose
meaning. In Figure 2 the hill field is used to find potentially active compounds
to visualize with the tcplPlotL4ID function.

The model summary values in Figure 2 include Akaike Information Criterion
(AIC), probability, and the root mean square error (RMSE). Let log(L(✓̂, y))
be the log-likelihood of the model ✓̂ given the observed values y, and K be the
number of parameters in ✓̂, then,

AIC = �2 log(L(✓̂, y)) + 2K (17)

The probability, !
i

, is defined as the weight of evidence that model i is the best
model, given that one of the models must be the best model. Let �

i

be the
di↵erence AIC

i

� AIC
min

for the i

th model. If R is the set of models, then !

i

is given by:

!

i

=
exp

�
� 1

2�i

�
P

R

i=1 exp
�
� 1

2�r

� (18)

DRAFT VERSION

The RMSE is given by:

RMSE =

sP
N

i=1(yi � µ

i

)2

N

(19)

where N is the number of observations, and µ

i

and y

i

are the estimated and
observed values at the i

th observation, respectively.

R Input

> ## List the l4ids where the Hill model converged and plot 1
> l4data[hill == 1, l4id]

R Output

[1] 1 3 6 16 18 19 26 33 35 38 39 40 42

R Input

> tcplPlotL4ID(l4id = 35, lvl = 4L)

Concentration (µM)

P
e
r
c
e
n
t

A
c
t
i
v
i
t
y

0.01 0.1 1 10 100

−
5
0

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●●

●

●

●

●
●●

●

●

●

●
●

●●

ASSAY: AEID1 (DEC_Fake_Assay_up)

NAME: ChemName34
CHID: 34 CASRN: 5555−34−0
SPID(S): S00034
L4ID: 35

HILL MODEL (in red):
 tp ga gw
val: 179 −0.00426 1.2
sd: 8.6 0.0561 0.133

GAIN−LOSS MODEL (in blue):
 tp ga gw la lw
val: 193 0.0761 1.07 2.02 17.5
sd: 7.17 0.0514 0.1 0.00446 3.67

 CNST HILL GNLS
AIC: 438.69 307.6 279.48
PROB: 0 0 1
RMSE: 100.55 17.21 9.49

MAX_MEAN: 188 MAX_MED: 187 BMAD: 4.08

Figure 2: An example level 4 plot for a single concentration series. The orange
dashed line shows the constant model, the red dashed line shows the Hill model,
and the blue dashed line shows the gain-loss model. The gray striped box shows
the baseline region, 0± 3bmad . The summary panel shows assay endpoint and
sample information, the parameters and standard deviations for the Hill and
gain-loss models, and model summary values.

DRAFT VERSION

Level 5

Level 5 processing determines the winning model and activity for the concen-
tration series, bins all of the concentration series into categories, and calculates
additional point of departure estimates based on the activity cuto↵.

The model with lowest AIC value is selected as the winning model (modl),
and is used to determine the activity or hit-call for the concentration series.
If two models have equal AIC values, the simpler model (the model with less
parameters) wins the tie. All of the parameters for the winning model are
stored at level 5 with the prefix “modl ” to fascilitate easier queries. For a
concentration series to get an active hit-call either the Hill or gain-loss must be
selected. In addition to selecting the Hill or gain-loss model, the modeled and
observed response must meet an e�cacy cuto↵.

The final cuto↵ value (co↵) is defined as the maximum of three values: 20%
change, 3bmad , and an additional cuto↵. The additional cuto↵ is given by the
level 5 methods, analagous to the correction and normalization methods used
in levels 2 and 3. Currently, the additional cuto↵ methods consist of additional
scalars of bmad.

R Input

> ## Check aeid 1 for level 5 methods
> tcplLoadMthd(lvl = 5L, id = 1L)

R Output

aeid mthd mthd_id
1: 1 bmad5 2

For the example data the additional cuto↵ value is 5bmad . The final cuto↵
value is stored at level 5. The bmad for the example data is 4.08, making the
final cuto↵ will be 5bmad , or 20.41, because 5bmad is by definition greater than
3bmad and, in this example, greater than 20. If the Hill or gain-loss model
wins, and the estimated top paramter for the winning model (modl tp) and the
maximum median value (max med) are both greater than or equal to the cuto↵
(co↵), the concentration series is considered active and the hit-call (hitc) is set
to 1.

The hit-call can be 1, 0, or -1. A hit-call of 1 or 0 indicates the concentration
series is active or inactive, respectively, according to the analysis; a hit-call of
-1 indicates the concentration series had less than 4 concentrations.

When applicable, the activity concentration at baseline (ACB or modl acb)
and the activity concentration at cuto↵ are calculated for the winning model
(ACC or modl acc). The ACB and ACC are defined as the cocentration where
the estimated model value equals 3bmad and the cuto↵, respectively.

All concentration series fall into a single fit category (fitc), defined by the
leaves on the tree structure in Figure 3. Concentration series in the same cate-
gory will have similar characteristics, and often look very similar. Categorizing

DRAFT VERSION

all of the series allows for faster quality control checking, and fast identification
of potential false results. The first split di↵erentiates series by hit-call. Series
with a hit-call of -1 go into fit category 2. The following two paragraphs will
outline the logic for the active and inactive branches.

The first split in the active branch di↵erentiates series by the model winner,
Hill or gain-loss. For each model, the next split is defined by the e�cacy of
it’s top parameter in relation to the cuto↵. The top values is either less than
1.2co↵ or greater than or equal to 1.2co↵ . Finally, series on the active branch
go into leaves based on the position of the AC50 parameter in relation to the
tested concentration range. For comparison purposes the activity concentration
at 95% (AC95) is calculated, but not stored3. Series with AC50 values less than
the minimum concentration tested (logc min) go into the “<=” leaves, series
with AC50 values greater than the minimum tested concentration and AC95
values less than maximum tested concentration (logc max) go into the “==”
leaves, and series with AC95 values greater than the maximum concentration
tested go into the “>=” leaves.

The inactive branch is first divided by whether any median values were
greater than or equal to 3bmad . Series with no evidence of activity go into fit
cateogry 4. Similar to the active branch, series with evidence for activity are
separated by the model winner. The Hill and gain-loss portions of the inactive
branch follow the same logic. First series diverge by the e�cacy of their top
paramter in relation to the cuto↵: modl tp < 0 .8co↵ or modl tp � 0 .8co↵ .
Then the same comparison is made on the top values of the losing model. If
the losing model did not converge, the series go into the “DNC” category. If the
losing model top value is greater than or equal to 0.8co↵ , the series are split
based on whether the losing model top surpassed the cuto↵. On the constant
model branch, if neither top parameter is greater than or equal to 0.8bmad , the
series goes into fit category 7. If one of the top parameters is greater than or
equal to 0.8co↵ , the series goes into fit cateory 9 or 10 based on whether one of
the top values surpasssed the cuto↵.

With the level 5 method assigned, the user can carryout level 5 processing:

R Input

> ## Do level 5 processing for aeid 1 and load the data
> tcpl5(ae = 1L)

R Output

Loaded L4 AEID1 (42 rows; 0.01 secs)
Processed L5 AEID1 (42 rows; 0.05 secs)
Completed delete cascade for 1 ids (0.01 secs)
Wrote L5 AEID1 (42 rows; 0.02 secs)
[1] TRUE

3
Any activity concentration value or estimated model values for a given concentration can

be calculated using the tcplACXX and tcplACVal functions, respectively

DRAFT VERSION

01
: A

LL
 D

O
SE

 R
ES

PO
N

SE

03
: I

N
AC

TI
VE

05
: R

ES
P

>=
 B

LI
N

E

06
: C

N
ST

08
: A

N
YT

P
>=

 0
.8

(C
O

FF
)

11
: H

IL
L

12
: T

P
<

0.
8(

C
O

FF
)

14
: G

N
LS

 >
=

0.
8(

C
O

FF
)

17
: T

P
>=

 0
.8

(C
O

FF
)

19
: G

N
LS

 >
=

0.
8(

C
O

FF
)

22
: G

N
LS

23
: T

P
<

0.
8(

C
O

FF
)

25
: H

IL
L

>=
 0

.8
(C

O
FF

)

28
: T

P
>=

 0
.8

(C
O

FF
)

30
: H

IL
L

>=
 0

.8
(C

O
FF

)

33
: A

C
TI

VE

34
: H

IL
L

35
: T

P
<=

 1
.2

(C
O

FF
)

39
: T

P
>

1.
2(

C
O

FF
)

43
: G

N
LS

44
: T

P
<=

 1
.2

(C
O

FF
)

48
: T

P
>

1.
2(

C
O

FF
)

02
: C

A
N

N
O

T
D

ET
ER

M
IN

E

04
: R

ES
P

<
B

LI
N

E

07
: N

O
TP

 >
=

0.
8(

C
O

FF
)

09
: N

O
TP

 >
=

C
O

FF

10
: A

N
YT

P
>=

 C
O

FF
13

: G
N

LS
 <

 0
.8

(C
O

FF
)

15
: G

N
LS

 <
 C

O
FF 16

: G
N

LS
 >

=
C

O
FF 18

: G
N

LS
 <

 0
.8

(C
O

FF
)

20
: G

N
LS

 <
 C

O
FF

21
: G

N
LS

 >
=

C
O

FF

24
: H

IL
L

<
0.

8(
C

O
FF

)

26
: H

IL
L

<
C

O
FF

27
: H

IL
L

>=
 C

O
FF

29
: H

IL
L

<
0.

8(
C

O
FF

)

31
: H

IL
L

<
C

O
FF

32
: H

IL
L

>=
 C

O
FF

36
: A

C
50

 <
=

37
: A

C
50

 =
=

38
: A

C
50

 >
=

40
: A

C
50

 <
=

41
: A

C
50

 =
=

42
: A

C
50

 >
=

45
: A

C
50

 <
=46

: A
C

50
 =

=

47
: A

C
50

 >
=

49
: A

C
50

 <
=

50
: A

C
50

 =
=

51
: A

C
50

 >
=

52
: H

IL
L

D
N

C

53
: H

IL
L

D
N

C

54
: G

N
LS

 D
N

C

55
: G

N
LS

 D
N

C

F
ig
u
re

3:
T
h
e
ca
te
go
ri
es

u
se
d
to

b
in

ea
ch

fi
t.

E
ac
h
fi
t
fa
ll
s
in
to

on
e
le
af

of
th
e
tr
ee
.
T
h
e
le
av
es

ar
e
in
d
ic
at
ed

by
b
ol
d
gr
ee
n

fo
nt
.

DRAFT VERSION

R Input

> l5data <- tcplLoadData(lvl = 5L, fld = "aeid", val = 1L)

R Input

> tcplPlotL4ID(l4id = 33L, lvl = 5L)

Concentration (µM)

P
e
r
c
e
n
t

A
c
t
i
v
i
t
y

0.3 1 3 10 30 100

−
5
0

0
5
0

1
0
0

1
5
0

●

●

●

●●●

●

●

●
●

●●

●

●

●

●
●●

ASSAY: AEID1 (DEC_Fake_Assay_up)

NAME: ChemName32
CHID: 32 CASRN: 5555−32−0
SPID(S): S00032
L4ID: 33

HILL MODEL (in red):
 tp ga gw
val: 25.8 0.552 7.98
sd: 4.26 2.84 301

GAIN−LOSS MODEL (in blue):
 tp ga gw la lw
val: 55.6 1.02 2.34 1.97 12.4
sd: 2.74 0.0316 0.396 0.00644 2.06

 CNST HILL GNLS
AIC: 167.84 142.71 97.76
PROB: 0 0 1
RMSE: 24.64 11.29 2.97

MAX_MEAN: 51.2 MAX_MED: 51.5 BMAD: 4.08

COFF: 20.4 HIT−CALL: 1 FITC: 50 ACTP: 1

 GNLS
 97.76
 1
 2.97

Figure 4: An example level 5 plot for a single concentration series. The solid line
and model highlighting indicate the model winner. The horizontal line shows
the cuto↵ value. The summary values include the cuto↵, hit-call, fit category
and activity probability.

Figure 4 shows an example of a concentration series in fit category 50,
indicating the series is active with and the gain-loss model won with a top
value greater than 1.2co↵ and an AC50 value within the tested concentration
range. The tcplPlotFitc functions shows the distribution of concentration
series across the fit category tree (Figure 5).

The distribution in Figure 5 shows at least 1 concentration series fell into fit
category 21. Following the logic discussed previously, fit cateogry 21 indicates
an inactive series where the Hill model was selected, the top asymptote for the
Hill model was greater than 0.8co↵ and the gain-loss top asymptote was greater
than or equal to the cuto↵. The series in fit category 21 can be found easily in
the level 5 data:

DRAFT VERSION

R Input

> tcplPlotFitc(fitc = l5data$fitc)

01: ALL DOSE RESPONSE

03: INACTIVE

05: RESP >= BLINE

06: CNST

08: ANYTP >= 0.8(COFF)

11: HILL

12: TP < 0.8(COFF)

14: GNLS >= 0.8(COFF)

17: TP >= 0.8(COFF)

19: GNLS >= 0.8(COFF)22: GNLS

23: TP < 0.8(COFF)

25: HILL >= 0.8(COFF)

28: TP >= 0.8(COFF)

30: HILL >= 0.8(COFF)

33: ACTIVE

34: HILL

35: TP <= 1.2(COFF)

39: TP > 1.2(COFF)

43: GNLS

44: TP <= 1.2(COFF)

48: TP > 1.2(COFF)

02: CANNOT DETERMINE

04: RESP < BLINE

07: NOTP >= 0.8(COFF)

09: NOTP >= COFF

10: ANYTP >= COFF 13: GNLS < 0.8(COFF)

15: GNLS < COFF

16: GNLS >= COFF

18: GNLS < 0.8(COFF)

20: GNLS < COFF

21: GNLS >= COFF

24: HILL < 0.8(COFF)

26: HILL < COFF

27: HILL >= COFF

29: HILL < 0.8(COFF)

31: HILL < COFF

32: HILL >= COFF

36: AC50 <=

37: AC50 ==

38: AC50 >=

40: AC50 <=
41: AC50 ==

42: AC50 >=

45: AC50 <=

46: AC50 ==

47: AC50 >=

49: AC50 <=

50: AC50 ==

51: AC50 >=

52: HILL DNC

53: HILL DNC

54: GNLS DNC

55: GNLS DNC

1−2 3−3 4−3 4−5 6−7 8−9 10−12 13+

Figure 5: The distribution of concentration series by fit category for the example
data. Both the size and color of the circles indicate the number of concentration
series. The legend gives the range for number of concentration series by color.

R Input

> l5data[fitc == 21,
list(l4id, hill_tp, gnls_tp, max_med, coff, hitc)]

R Output

l4id hill_tp gnls_tp max_med coff hitc
1: 18 22.16028 22.16028 13.34993 20.4147 0

The output and plot in Figure 6 show the series (l4id 18) in fit cateogry 21.
The hill tp and gnls tp parameters are equal and greater than co↵ , however,
the maximum median value (maxm ed) is not greater than the cuto↵ making
the series inactive.

Level 6

Level 6 processing applies methods to flag concentration series to help identify
potential false positive and false negative hit-calls or explain apparent anomalies

DRAFT VERSION

R Input

> tcplPlotL4ID(l4id = 18L, lvl = 5L)

Concentration (µM)

P
e
r
c
e
n
t

A
c
t
i
v
i
t
y

0.3 1 3 10 30 100

−
5
0

0
5
0

1
0
0

1
5
0

●
●

●
●

●
●

●●
●

●●●
●●●●

●●

ASSAY: AEID1 (DEC_Fake_Assay_up)

NAME: ChemName17
CHID: 17 CASRN: 5555−17−0
SPID(S): S00017
L4ID: 18

HILL MODEL (in red):
 tp ga gw
val: 22.2 1.74 0.421
sd: 22.6 2.15 0.26

GAIN−LOSS MODEL (in blue):
 tp ga gw la lw
val: 22.2 1.74 0.421 3.97 7.99
sd: NA NA NA NA NA

 CNST HILL GNLS
AIC: 131.87 103.68 107.68
PROB: 0 0.88 0.12
RMSE: 8.56 3.45 3.45

MAX_MEAN: 12.6 MAX_MED: 13.3 BMAD: 4.08

COFF: 20.4 HIT−CALL: 0 FITC: 21 ACTP: 1

 HILL
 103.68
 0.88
 3.45

Figure 6: Level 5 plot for l4id 18 showing the series in fit category 21.

in the data. Each flag has is defined by a level 6 method that has to be assigned
to each assay endpoint. Unlike previous levels, an assay endpoint does not need
any level 6 methods assigned to complete level 6 processing. Analagous to ear-
lier levels, the assigned level 6 methods can be loaded with the tcplLoadMthd
function:

R Input

> tcplLoadMthd(lvl = 6L, id = 1L)

R Output

aeid mthd mthd_id nddr
1: 1 singlept.hit.high 6 0
2: 1 singlept.hit.mid 7 0
3: 1 multipoint.neg 8 0
4: 1 noise 10 0
5: 1 border.hit 11 0
6: 1 border.miss 12 0
7: 1 rep.mismatch 14 1
8: 1 gnls.lowconc 15 0

DRAFT VERSION

The example data has 8 level 6 methods assigned to aeid 1. The nddr field
in the output from tcplLoadMthd for level 6 indicates if the method requires
data for the individual points. Methods with a value of 0 in the nddr field only
require the modeled/summary information at levels 4 and 5. If any method
requires the individual point data the tcpl6 has to load additional data and the
processing time increases.

R Input

> ## Do level 6 processing for aeid 1 and load the data
> tcpl6(ae = 1L)

R Output

Loaded L5 AEID1 (42 rows; 0.03 secs)
Processed L6 AEID1 (42 rows; 0.26 secs)
Completed delete cascade for 1 ids (0 secs)
Wrote L6 AEID1 (3 rows; 0.02 secs)
[1] TRUE

R Input

> l6data <- tcplLoadData(lvl = 6L, fld = "aeid", val = 1L)
> l6data

R Output

aeid l6id l4id l5id spid l6_mthd_id
1: 1 1 19 19 S00018 6
2: 1 2 40 40 S00039 10
3: 1 3 18 18 S00017 12

flag fval fval_unit
1: Only highest conc above baseline, active NA NA
2: Noisy data NA NA
3: Borderline inactive NA NA

In the example data 3 out of the 42 concentration series were flagged in the
level 6 processing. Series not flagged in the level 6 processing do not get stored
at level 6. Each series-flag combination is a separate entry in the level 6 data.
Or in other words, if a series has multiple flags it will show up on multiple rows
in the output. In the example data no series has more than one flag. The first
series listed in level 6 has the flag “Only highest conc above baseline, active,”
meaning the only median value in the series greater than 3bmad was at the
highest tested concentration. The plot for l4id 19 (Figure 7) illustrates the only
activity occuring at the highest concentration tested. The series certainly has
statistical evidence of activity, but the flagging allows users to quickly identify
potential problems and potentially di↵erentiate the series in Figure 7 from a
series similar to Figure 2 where both asymptotes are resolved and mutliple
concentrations fell outside the noiseband.

DRAFT VERSION

R Input

> tcplPlotL4ID(l4id = 19L, lvl = 6L)

Concentration (µM)

P
e
r
c
e
n
t

A
c
t
i
v
i
t
y

0.3 1 3 10 30 100

−
5
0

0
5
0

1
0
0

1
5
0

●

●
●●●●

●

●
●●

●
●

●

●
●

●

●

●

ASSAY: AEID1 (DEC_Fake_Assay_up)

NAME: ChemName18
CHID: 18 CASRN: 5555−18−0
SPID(S): S00018
L4ID: 19

HILL MODEL (in red):
 tp ga gw
val: 35.6 1.78 1.77
sd: 37.2 0.655 1.87

GAIN−LOSS MODEL (in blue):
 tp ga gw la lw
val: 35.6 1.78 1.77 3.9 4.43
sd: 37.5 0.659 1.89 7860 18300

 CNST HILL GNLS
AIC: 141.63 120.08 124.08
PROB: 0 0.88 0.12
RMSE: 12.04 5.14 5.14

MAX_MEAN: 25.5 MAX_MED: 24.8 BMAD: 4.08

COFF: 20.4 HIT−CALL: 1 FITC: 42 ACTP: 1

FLAGS:
6

 HILL
 120.08
 0.88
 5.14

Figure 7: An example level 6 plot for a single concentration series. All level 6
method ID (l6 mthd id) values concatenated in the flags secion. If flags have
an associated value (fval), the value will be shown in parentheses to the right
of the level 6 method ID.

DRAFT VERSION

Single Concentration Screening

The single concentration screening aspect of the package is still under devel-
opment. The current single screen functions included in the package are not
intended for use.

DRAFT VERSION

A Field Explaination/Database Stucture

Table 2: List of data tables in the tcpl databases.

Table Name Description

agg level4 A look-up table between level3 and level4 storing the level 0
through level 4 primary keys

assay component map Assay component source names and their corresponding assay
component ids†

l2 acid Level 2 method assignments at the assay component level

l2 methods Level 2 methods

l3 aeid Level 3 method assignments at the assay endpoint level

l3 methods Level 3 methods

l5 aeid Level 5 method assignemnts at the assay endpoint level

l5 fit categories The level 5 fit categories

l5 methods Level 5 methods

l6 aeid Level 6 method assignments at the assay endpoint level

l6 methods Level 6 methods

level0 Level 0 multiple concentration

level1 Level 1 multiple concentration

level2 Level 2 multiple concentration

level3 Level 3 multiple concentration

level4 Level 4 multiple concentration

level5 Level 5 multiple concentration

level6 Level 6 multiple concentration

single0 Level 0 single concentration

single1 Level 1 single concentration

single2 Level 2 single concentration

†
Assay component source name (acsn) used in level 0 processing to write data to tcpl databases

DRAFT VERSION

Table 3: Fields in agg level4 table.

Field Description

aeid Assay endpoint ID

l0id Level 0 ID

l1id Level 1 ID

l2id Level 2 ID

l3id Level 3 ID

l4id Level 4 ID

Table 4: Fields in assay component map table.

Field Description

acid Assay component ID

acsn Assay component source name

Table 5: Fields in l2 acid table.

Field Description

l2 mthd id Level 2 method ID assigned to the assay component

acid Assay component ID for the assigned method

exec ordr Execute order for the method

created date Date created

modified date Date modified

modified by User that created/modified the assignment

Table 6: Fields in l2 methods table.

Field Description

l2 mthd id Level 2 method ID

l2 mthd Level 2 method name

desc Level 2 method description

Date and user fields not listed to save space, see Table 5.

DRAFT VERSION

Table 7: Fields in l3 aeid table.

Field Description

l3 mthd id Level 3 method ID assigned to the assay endpoint

aeid Assay endpoint ID for the assigned method

exec ordr Execute order for the method

Date and user fields not listed to save space, see Table 5.

Table 8: Fields in l3 methods table.

Field Description

l3 mthd id Level 3 method ID

l3 mthd Level 3 method name

desc Level 3 method description

Date and user fields not listed to save space, see Table 5.

Table 9: Fields in l5 aeid table.

Field Description

aeid Assay endpoint ID for the assigned method

l5 mthd id Level 5 method ID assigned to the assay endpoint

Date and user fields not listed to save space, see Table 5.

Table 10: Fields in l5 fit categories table.

Field Description

fitc Fit category

parent fitc Parent fit category

name Fit category name

xloc x-axis location for plotting purposes

yloc y-axis location for plotting purposes

DRAFT VERSION

Table 11: Fields in l5 methods table.

Field Description

l5 mthd id Level 5 method ID

l5 mthd Level 5 method name

desc Level 5 method description

Date and user fields not listed to save space, see Table 5.

Table 12: Fields in l6 aeid table.

Field Description

aeid Assay endpoint ID for the assigned method

l6 mthd id Level 6 method ID assigned to the assay endpoint

Date and user fields not listed to save space, see Table 5.

Table 13: Fields in l6 methods table.

Field Description

l6 mthd id Level 6 method ID

l6 mthd Level 6 method name

desc Level 6 method descripion

nddr 1 if the method requires individual point data, else 0

Date and user fields not listed to save space, see Table 5.

DRAFT VERSION

Table 14: Fields in level0 table.

Field Description

l0id Level 0 ID

acid Assay component id

spid Sample ID

cpid Chemical plate ID

apid Assay plate ID

rowi Assay plate row index

coli Assay plate column index

wllt Well type†

wllq 1 if the well quality was good, else 0‡

conc Concentration in mircomolar

rval Raw assay component value/readout from vendor

srcf Filename of the source file containing the data

Date and user fields not listed to save space, see Table 5.

†
Information about well types available in Appendix B

‡
Entries with well quality values of 0 get removed during processing

Table 15: Fields in level1 table.

Field Description

l1id Level 1 ID

l0id Level 0 ID

acid Assay component ID

cndx Concentration index

repi Replicate index

Date and user fields not listed to save space, see Table 5.

DRAFT VERSION

Table 16: Fields in level2 table.

Field Description

l2id Level 2 ID

l0id Level 0 ID

acid Assay component ID

l1id Level 1 ID

cval Corrected value

Date and user fields not listed to save space, see Table 5.

Table 17: Fields in level3 table.

Field Description

l3id Level 3 ID

aeid Assay endpoint ID

l0id Level 0 ID

acid Assay component ID

l1id Level 1 ID

l2id Level 2 ID

bval Baseline value

pval Positive control value

logc Log base 10 concentration

resp Normalized response value

Date and user fields not listed to save space, see Table 5.

DRAFT VERSION

Table 18: Fields in level4 table (Part 1).

Field Description

l4id Level 4 ID

aeid Assay endpoint ID

spid Sample ID

bmad Baseline median absolute deviation

resp max Maximum response value

resp min Minimum response value

max mean Maximum mean response value

max mean conc Log concentration at max mean

max med Maximum median response value

max med conc Log concentration at max med

logc max Maximum log concentration tested

logc min Minimum log concentration tested

cnst 1 if the constant model converged, 0 if failed to convere, N/A if
series had less than four concentrations

hill 1 if the hill model converged, 0 if failed to converge, N/A if series
had less than four concentrations or if max med < 3bmad

hcov 1 if the hill model Hessian matrix could be inverted, else 0

gnls 1 if the gain-loss model converged, 0 if failed to converge, N/A if
series had less than four concentrations or if max med < 3bmad

gcov 1 if the gain-loss model Hessian matrix could be inverted, else 0

cnst er Scale term for the constant model

cnst aic AIC for the constant model

cnst rmse RMSE for the constant model

cnst prob Probability the constant model is the true model

hill tp Top asymptote for the Hill model

hill tp sd Standard deviation for hill tp

hill ga AC50 for the Hill model

hill ga sd Standard deviation for hill ga

DRAFT VERSION

Table 19: Fields in level4 table (Part 2).

Field Description

hill gw Hill coe�cient

hill gw sd Standard deviation for hill gw

hill er Scale term for the Hill model

hill er sd Standard deviation for hill er

hill aic AIC for the Hill model

hill rmse RMSE for the Hill model

hill prob Probability the Hill model is the true model

gnls tp Top asymptote for the gain-loss model

gnls tp sd Standard deviation for gnls tp

gnls ga AC50 in the gain direction for the gain-loss model

gnls ga sd Standard deviation for gnls ga

gnls gw Hill coe�cient in the gain direction

gnls gw sd Standard deviation for gnls gw

gnls la AC50 in the loss direction for the gain-loss model

gnls la sd Standard deviation for gnls la

gnls lw Hill coe�cient in the loss direction

gnls lw sd Standard deviation for gnls lw

gnls er Scale term for the gain-loss model

gnls er sd Standard deviation for gnls er

gnls aic AIC for the gain-loss model

gnls rmse RMSE for the gain-loss model

gnls prob Probability the gain-loss model is the true model

nconc Number of concentrations tested

npts Number of points in the concentration series

nrep Number of replicates in the concentration series

nmed gtbl Number of median values greater than 3bmad

tmpi Ignore, temporary index used for uploading purposes

Date and user fields not listed to save space, see Table 5.

DRAFT VERSION

Table 20: Fields in level5 table.

Field Description

l5id Level 5 ID

l4id Level 4 ID

aeid Assay endpoint ID

modl Winning model: “cnst”, “hill”, or “gnls”

hitc Hit-call, 1 if active, 0 if inactive

fitc Fit category†

co↵ Final cuto↵ value

actp Activity probability (1� cnst prob)

modl er Scale term for the winning model

modl tp Top asymptote for the winning model

modl ga Gain AC50 for the winning model

modl gw Gain Hill coe�cient for the winning model

modl la Loss AC50 for the winning model

modl lw Loss Hill coe�cient for the winning model

modl prob Probability for the winning model

modl rmse RMSE for the winning model

modl acc Acitivty concentration at cuto↵ for the winning model

modl acb Acitivty concentration at baseline for the winning model

modl ac10 AC10 for the winning model

Date and user fields not listed to save space, see Table 5.

†
Fit category schema in Figure 3

DRAFT VERSION

Table 21: Fields in level6 table.

Field Description

l6id Level 6 ID

l5id Level 5 ID

l4id Level 4 ID

aeid Assay endpoint ID

l6 mthd id Level 6 method ID

flag Text text output for the level 6 method

fval Value from the flag method, if applicable

fval unit Units for fval , if applicable

Date and user fields not listed to save space, see Table 5.

Table 22: List of assay annotation tables in the tcpl databases.

Table Name Description

assay Assay-level annotation

assay component Assay component-level annotation

assay component endpoint Assay endpoint-level annotation

assay reagent Assay reagent information

assay reference Citations for assay annotation

assay source Assay source-level annotation

gene Gene identifiers and descriptions

intended target The intended assay target at the assay endpoint level

organism Organism identifiers and descriptions

technological target The technological assay target at the assay component level

(omplete definitions of annotation fields available at <http://epa.gov/ncct/toxcast/data.html>.

DRAFT VERSION

Table 23: List of sample information tables in the tcpl databases.

Table Name Description

casrn Chemical identifiers

gsid chemical set Chemical library information

sample Sample to chemical ID map

Sample information tables stored in a seperate database internally at the ToxCast program.

Likewise, queries to these tables go through the TCPL_CHEM database setting. For easier exter-

nal use the tables have been copied into the data database. Not all fields used in processing.

Table 24: Fields in casrn table.

Field Description

c casrn id CAS registry number

c gsid id DSSTox GSID†

c chemicalname Chemical name

Unused fields not listed

†
More information about the US EPA DSSTox program at <http://www.epa.gov/ncct/dsstox/>.

Table 25: Fields in sample table.

Field Description

sa sample id Sample ID, or spid in data tables

sa gsid DSSTox GSID†

Unused fields not listed

†
More information about the US EPA DSSTox program at <http://www.epa.gov/ncct/dsstox/>.

DRAFT VERSION

B Level 0 Pre-Processing

Level 0 pre-processing can be done on virtually any high-throughput/high-
content screening application. In the ToxCast program, level 0 processing is
done in R by vendor/dataset-specific scripts. The individual R scripts act as
the “laboratory notebook” for the data, with all pre-processing decisions clearly
commented and explained.

Level 0 pre-processing has to reformat the raw data into the standard format
for the pipeline, and can also make manual changes to the data. All manual
changes to the data should be very well documented with justification. Common
examples of manual changes include fixing a sample ID typo, or changing well
quality value(s) to 0 after finding obvious problems like a plate row/column
missing an assay reagent.

Each row in the level 0 pre-processing data represents one well-assay com-
ponent combination, containing 11 fields (Table 26). The only field in level 0
preprocessing not stored at level 0 is the assay component source name (acsn).
The assay component source name should be some concatenation of data from
the assay source file that identifies the unique assay components. When the data
is loaded into the database, the assay component source name is mapped to assay
component ID through the assay component map table in the tcpl databases.
Assay components can have multiple assay component source names, but each
assay component source name can only map to a single assay component.

The well type field is used in the processing to di↵erentiate controls from test
compounds in numerous applications, including normalization and definition of
the assay noise level. Currently, the tcpl package includes the 8 well types in
Table 27. Package users are encouraged to suggest new well types and methods
to better accommodate their data.

The final step in level 0 pre-processing is loading the data into the tcpl
databases. The tcpl package includes the tcplWriteLvl0 function to load data
into the databases. The tcplWriteLvl0 function maps the assay component
source name to the appropriate assay component ID, checks each field for the
correct class, and checks the database for the sample IDs with well type“t”. Each
test compound sample ID must be included in the tcpl databases before loading
data. The tcplWriteLvl0 also checks each test compound for concentration
values.

DRAFT VERSION

Table 26: Required fields in level 0 pre-processing.

Field Description N/A

acsn Assay component source name No

spid Sample ID No

cpid Chemical plate ID Yes

apid Assay plate ID Yes

rowi Assay plate row index, as an integer Yes

coli Assay plate column index, as an integer Yes

wllt Well type No

wllq 1 if the well quality was good, else 0 No

conc Concentration in mircomolar No†

rval Raw assay component value/readout from vendor Yes‡

srcf Filename of the source file containing the data No

The N/A column indicates whether the field can be N/A in the pre-processed data.

†
Concentration can be N/A for control values only tested at a single concen-

tration. Concentration cannot be N/A for any test compound data.

‡
If the raw value is N/A, well type has to be 0.

Table 27: The possible well type values.

Well Type Description

t Test compound

c Gain-of-signal control in multiple concentrations

p Gain-of-signal control in single concentration

n Neutral/negative control

m Loss-of-signal control in multiple concentrations

o Loss-of-signal control in single concentration

b Blank well

v Viability control

DRAFT VERSION

C Burst Z-Score Calculation

The tcplVarMat function creates chemical-by-assay matrices for the level 4 and
level 5 data. When multiple sample-assay series exist for one chemical, a single
series is selected by the tcplSubsetChid function. See ?tcplSubsetChid for
more information.

The var paramter for tcplVarMat can accept any of the level 4 or level
5 fields/variables, or one of two special variables. The first special variable,
“tested”, returns 0 or 1, where 1 indicates the chemical-assay pair was tested in
either multiple concentration or single concentration. Chemical-assay pairs not
tested in multiple concentration will be N/A in the hit-call matrix. The second
special parameter, “zscore” returns a z-score based on the distribution of burst
assays.

The burst assay endpoints are defined by the “burst assay” field in the as-
say component endpoint table, where 1 indicates the assay endpoint is used in
the burst distribution calculation. The example dataset only contains one assay
endpoint, so a good illustrative example is beyond the scope of this vignette.
However, the following code block demonstrates how the user would check which
assay endpoints are used in the to define the burst distribution:

R Input

> tcplLoadAeid(fld = "burst_assay", val = 1)

R Output

Empty data.table (0 rows) of 3 cols: burst_assay,aeid,aenm

R Input

> ## Using val = 0 shows the example assay endpoint
> tcplLoadAeid(fld = "burst_assay", val = 0)

R Output

burst_assay aeid aenm
1: 0 1 DEC_Fake_Assay_up

For each chemical, the burst distrubtion is defined by the median and MAD
of the AC50 (modlga) values for the burst endpoints where the hit-call was 1
(active). Once the burst distribution is defined for each chemical, the global
burst MAD is defined as the median of all MAD values for chemicals with
greater than 1 active burst endpoint. The burst median for chemicals with less
two active burst endpoints is set to 3.4 The burst z-score is calculated for each
AC50 value as:

z score = �modl ga � cyto pt

global mad

(20)

4
In log base 10 micromolar units 3 is equivalent to 1 molar.

DRAFT VERSION

where cyto pt is the burst median. All of the values to define the burst distri-
bution are also returned by the tcplVarMat function when var is “zscore”. The
burst z-score values are multiplied by -1 to make values that are more potent
relative to the busrt distribution a higher positive z-score.

DRAFT VERSION

D Plans for V1.0 Release

• Completed documentation of all functions

• Mature single concentration screening

• Register sample/assay functions for adding samples and assays to tcpl
databases easily from the R interface

• Update annotation function(s) for updating the assay and possibly sample
annotations ??

